Your software comes with five sample cases that illustrate various features of PedCath.

It is recommended that you spend some time reviewing these examples and entering practice cases before logging actual data.

1. John Doe. This case illustrates a single cath with a single set of hemodynamics.
 Note that with a single set of hemodynamics, the Summary page includes additional information.

 The following printing options have been selected:
 a) **Summary** is selected. This creates a one-page summary of the cath record, including an image of the diagram.
 b) **Expanded Calculations** is selected, generating a full-page listing of the all the calculations for the sample cath.
 c) **Measurements** box is checked, so the report includes a one-page summary of the optional measurements for the cath.
 d) **Full Page Diagram** is selected. The large diagram includes any embedded hemodynamic data.
 e) **Diagram Caption** is checked. Notice that the line “Arrows indicate catheter course” and appears below the diagram on both the summary page and full-page diagram. Clicking the Options button in the lower right of the Cath Report Setup window may change the caption text.

2. John Deere. This case illustrates a single cath with two sets of hemodynamics.
 Since the Summary page includes more than one set of hemodynamic data, only the summary information is printed for each set. Full hemodynamic data can be printed on subsequent pages.

 Printing options:
 a) **Summary** is selected.
 b) The cath is then locked to prevent further editing.
 c) Later, the patient’s weight is corrected to 12.3 Kg.
 d) A second report is printed, with note that it had been modified.

3. Lotsa Oxygen. A single cath with two sets of hemodynamics—includes dissolved oxygen.
 If non-zero PO2 values are entered in the CALCULATION OVERRIDE window, dissolved oxygen is calculated.

 Printing options:
 a) **Summary, Expanded Calculations and Full-Page Diagram** are selected.
 b) **Documents** box is checked. The cath report narrative and letter to the referring physician are now included.
 c) Note text formatting used in the anatomy diagram. A bold font has been used in the diagram to accent values obtained on 100% O2.

4. Angela Plastie. This case illustrates the Image Manager feature.

 Printing options:
 a) **Summary** report is selected.
 b) **Images** report is also selected, showing before and after waveform and angio images.

5. Buck Rogers. This case illustrates a patient with two caths.
 In the BROWSE screen, patients with multiple caths will have those caths listed in reverse date order (i.e. from most recent cath at the top to earliest cath at the bottom).

 Printing options:
 a) Rogers’ first cath is printed with all print options except **Summary** and **Diagram Options** turned off, to produce a single page report.
Doe, John
MRN: 123456789012
Birth Date: 09/19/1995
Cath Date: 09/26/1996
Cath #: 95c-bb11
Age at cath: 12 months
Gender: Male
Attending: William Hammill, MD
Fellow: Sara E. Regan, MD
Referring: Dr. Kymberly Shackelford
Height: 85.0 cm Weight: 9.5 kg
BSA = 0.47 m²
Fluoro: 16.00 min Contrast: 12.00 mL
Vein: right femoral
Artery: right femoral

Example cath
Qp = 9.72 L/min (20.68 L/min/m²)
Qs = 2.59 L/min (5.51 L/min/m²)
Rp = 1.65 units (0.77 units x m²)
Rs = 21.22 units (9.97 units x m²)
Qp/Qs = 3.75 : 1 | Rp/Rs = 0.08
Heart Rate: 121 bpm
VO2: 198 ml/min/m²
Hemoglobin: 8.8 gm/dL
Inspired O2: 21%
ph: 7.37
pCO2: 43.0
pO2: 83.0
HCO3: 25.0
Thermo CO:

Diagnoses / Procedures
130. VSD, perimembranous
20. ASD, secundum
241. Respiratory disease

Comments
Left to right shunt, large
Right lung atelectasis

<table>
<thead>
<tr>
<th>%O2</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>SVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>RA</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>88</td>
<td>RV</td>
<td>50</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>PA</td>
<td>37</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>RPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LPA</td>
<td>37</td>
<td>12</td>
<td>22</td>
</tr>
</tbody>
</table>

Right

<table>
<thead>
<tr>
<th>%O2</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>LA</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>LV</td>
<td>95</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>aAO</td>
<td>95</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>97</td>
<td>dAO</td>
<td>97</td>
<td>40</td>
<td>61</td>
</tr>
</tbody>
</table>

IVC: O2%: 60
Mean: 6
Femoral Artery: O2%: 97
Sys/A: 99 Dias/V: 42 Mean: 63
L.U. Pulm. Vein: O2%: 97
Mean: 8
R.U. Pulm. Vein: O2%: 90
Mean: 7

Page 1 of 4
Printed: 07/21/2005
Example cath

Calculations:

\[
\text{O}_2 \text{ capacity} = \text{HB} \times 1.36
\]
\[
11.97 = 8.8 \times 1.36
\]

\[
\text{MV O}_2 \text{ content} = (\text{O}_2 \text{ capacity} \times \text{MV sat})
\]
\[
8.02 = (11.97 \times 0.67)
\]

\[
\text{SA O}_2 \text{ content} = (\text{O}_2 \text{ capacity} \times \text{SA sat})
\]
\[
11.61 = (11.97 \times 0.97)
\]

\[
\text{PA O}_2 \text{ content} = (\text{O}_2 \text{ capacity} \times \text{PA sat})
\]
\[
10.65 = (11.97 \times 0.89)
\]

\[
\text{PV O}_2 \text{ content} = (\text{O}_2 \text{ capacity} \times \text{PV sat})
\]
\[
11.61 = (11.97 \times 0.97)
\]

\[
\text{Qp} = \frac{\text{O}_2 \text{ consumption}}{((\text{PV} - \text{PA content}) \times 10)}
\]

\[
\text{Qs} = \frac{\text{O}_2 \text{ consumption}}{((\text{SA} - \text{MV content}) \times 10)}
\]
\[
5.51 \text{ L/min/m}^2 = \frac{198}{(11.61 - 8.02) \times 10}
\]

\[
\text{Rp} = \left(\frac{\text{mean MPA - wedge}}{\text{Qp}}\right)
\]
\[
0.77 \text{ units x m}^2 = \left(\frac{25 - 9}{20.68 \text{ L/min/m}^2}\right)
\]

\[
\text{Rs} = \left(\frac{\text{mean sys - mean RA}}{\text{Qs}}\right)
\]
\[
9.97 \text{ units x m}^2 = \left(\frac{61 - 6}{5.51 \text{ L/min/m}^2}\right)
\]

Dissolved oxygen not calculated.

Values used:

MV sat = 67
PA sat = 89
Mean MPA = 25
Mean Sys = 61
HB = 8.8
PV sat = 97
SA sat = 97
Wedge = 9.0
Mean RA = 6
BSA = 0.47 m²
O₂ consumption = 198 mL/Min/m²

Doe, John
MRN: 123456789012
Birth Date: 09/19/1995
Cath Date: 09/26/1996
Cath #: 95c-bb11
Age at cath: 12 months
Gender: Male
Attending: William Hammill, MD
Fellow: Sara E. Regan, MD
Referring: Dr. Kymberly Shackelford
Height: 85.0 cm Weight: 9.5 kg
BSA = 0.47 m²
Fluoro: 16.00 min Contrast: 12.00 mL
Vein: right femoral
Artery: right femoral

Example cath

Qp = 9.72 L/min (20.68 L/min/m²)
Qs = 2.59 L/min (5.51 L/min/m²)
Rp = 1.65 units (0.77 units x m²)
Rs = 21.22 units (9.97 units x m²)
Qp/Qs = 3.75 : 1 Rp/Rs = 0.08

Heart Rate: 121 bpm
VO₂: 198 ml/min/m²
Hemoglobin: 8.8 gm/dL
Inspired O₂: 21%
pH: 7.37
pCO₂: 43.0
pO₂: 83.0
HCO₃: 25.0

<table>
<thead>
<tr>
<th>%O₂</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>SVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>RA</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>RV</td>
<td>50</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>PA</td>
<td>37</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>RPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPA</td>
<td></td>
<td>37</td>
<td>12</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%O₂</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>LA</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>LV</td>
<td>95</td>
<td>10</td>
<td>57</td>
</tr>
<tr>
<td>97</td>
<td>aAO</td>
<td>95</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>97</td>
<td>dAO</td>
<td>97</td>
<td>40</td>
<td>61</td>
</tr>
</tbody>
</table>

IVC: O₂%: 60
Mean: 6
Femoral Artery: O₂%: 97
Sys/A: 99 Dias/V: 42 Mean: 63
L.U. Pulm. Vein: O₂%: 97
Mean: 8
R.U. Pulm. Vein: O₂%: 90
Mean: 7

Printed: 07/21/2005
Example cath

Ventricular Volume

<table>
<thead>
<tr>
<th></th>
<th>EDV</th>
<th>ESV</th>
<th>EF%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>46.5</td>
<td>23.0</td>
<td>51%</td>
</tr>
<tr>
<td>Left</td>
<td>26.3</td>
<td>8.9</td>
<td>66%</td>
</tr>
</tbody>
</table>

Ventricular Mass

<table>
<thead>
<tr>
<th>gm</th>
<th>20.0</th>
</tr>
</thead>
</table>

PA Diameter

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>10.3</td>
</tr>
<tr>
<td>Left</td>
<td>8.8</td>
</tr>
</tbody>
</table>

- PA Index: 307
- PA Area Index: 1.50

Valve Diameter

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>18.0</td>
</tr>
<tr>
<td>MV</td>
<td>19.0</td>
</tr>
<tr>
<td>PV</td>
<td>15.0</td>
</tr>
<tr>
<td>AV</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Example cath

Qp = 9.72 L/min (20.68 L/min/m²)

Qs = 2.59 L/min (5.51 L/min/m²)

Rp = 1.65 units (0.77 units x m²)

Rs = 21.22 units (9.97 units x m²)

Qp/Qs = 3.75 : 1 | Rp/Rs = 0.08

Heart Rate: 121 bpm

VO2: 198 ml/min/m²

Hemoglobin: 8.8 gm/dL

Inspired O2: 21%

pCO2: 43.0

pO2: 83.0

HCO3: 25.0

Thermo CO:

<table>
<thead>
<tr>
<th>%O2</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>SVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>RA</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>88</td>
<td>RV</td>
<td>50</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>PA</td>
<td>37</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>RPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LPA</td>
<td>37</td>
<td>12</td>
<td>22</td>
</tr>
</tbody>
</table>

Wedge Mean

<table>
<thead>
<tr>
<th>%O2</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>LA</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>LV</td>
<td>95</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>aAO</td>
<td>95</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>97</td>
<td>aAO</td>
<td>97</td>
<td>40</td>
<td>61</td>
</tr>
</tbody>
</table>

IVC: O2%: 60

Mean: 6

Femoral Artery: O2%: 97

Sys/A: 99 Diameter: 42 Mean: 63

L.U. Pulm. Vein: O2%: 97

Mean: 8

R.U. Pulm. Vein: O2%: 90

Mean: 7

Doe, John

MRN: 123456789012

Birth Date: 09/19/1995

Cath Date: 09/26/1996

Cath #: 95c-bb11

Age at cath: 12 months

Gender: Male

Attending: William Hammill, MD

Fellow: Sara E. Regan, MD

Referring: Dr. Kymberly Shackelford

Height: 85.0 cm **Weight:** 9.5 kg

BSA = 0.47 m²

Fluoro: 16.00 min **Contrast:** 12.00 mL

Vein: right femoral

Artery: right femoral

Printed: 07/21/2005
Arrows indicate catheter course.
Deere, John
MRN: 1234567
Birth Date: 01/05/1995
Cath Date: 09/24/1995
Cath #: 783
Age at cath: 8 months
Gender: Male
Attending: Matherne MD, Paul
Fellow: Heller MD, Felice
Referring:
Height: 82.0 cm Weight: 11.4 kg
BSA = 0.49 m²
Fluoro: 16.00 min Contrast: 45.00 mL
Vein: 5 French, LFV
Artery: 20 ga angiocath RFA

Pre-valvuloplasty
Qp = 2.85 L/min (5.82 L/min/m²)
Qs = 2.48 L/min (5.06 L/min/m²)
Rp = 2.28 units (1.12 units x m²)
Rs = 27.81 units (13.63 units x m²)
Qp/Qs = 1.15 : 1 | Rp/Rs = 0.08

Post-valvuloplasty
Qp = 2.85 L/min (5.82 L/min/m²)
Qs = 2.85 L/min (5.82 L/min/m²)
Rp = 2.10 units (1.03 units x m²)
Rs = 23.83 units (11.68 units x m²)
Qp/Qs = 1.00 : 1 | Rp/Rs = 0.09

Diagnoses / Procedures
85. Pulmonary Valve Stenosis
597. Balloon Pulmonary Valvuloplasty

Comments
Bicuspid pulmonary valve.
Moderate pulmonary insufficiency.
Hyperdynamic outflow tract.
No residual outflow tract gradient.
Deere, John

MRN: 1234567
Birth Date: 01/05/1995
Cath Date: 09/24/1995
Cath #: 783
Age at cath: 8 months
Gender: Male
Attending: Matherne MD, Paul
Fellow: Heller MD, Felice
Referring:
Height: 82.0 cm
Weight: 12.4 kg
BSA = 0.51 m²
Fluoro: 16.00 min
Contrast: 45.00 mL
Vein: 5 French, LFV
Artery: 20 ga angiocath RFA

Pre-valvuloplasty

\[Q_p = 2.97 \text{ L/min (5.82 L/min/m²)} \]
\[Q_s = 2.58 \text{ L/min (5.06 L/min/m²)} \]
\[R_p = 2.19 \text{ units (1.12 units x m²)} \]
\[R_s = 26.72 \text{ units (13.63 units x m²)} \]
\[Q_p/Q_s = 1.15 : 1 \mid R_p/R_s = 0.08 \]

Post-valvuloplasty

\[Q_p = 2.90 \text{ L/min (5.82 L/min/m²)} \]
\[Q_s = 2.97 \text{ L/min (5.82 L/min/m²)} \]
\[R_p = 2.02 \text{ units (1.03 units x m²)} \]
\[R_s = 22.90 \text{ units (11.68 units x m²)} \]
\[Q_p/Q_s = 1.00 : 1 \mid R_p/R_s = 0.09 \]

Diagnoses / Procedures

85. Pulmonary Valve Stenosis
597. Balloon Pulmonary Valvuloplasty

Comments

Bicuspid pulmonary valve.
Moderate pulmonary insufficiency.
Hyperdynamic outflow tract.
No residual outflow tract gradient.

Arrows indicate catheter course.

This report was modified from the original report, signed on 07/15/2005.
The University of Virginia Health Sciences Center
The Children's Medical Center
Department of Pediatric Cardiology
Cardiac Catheterization Laboratory

Oxygen, Lotsa

MRN: 123
Birth Date: 01/01/2000
Cath Date: 05/22/2003
Cath #: 03c-0123
Age at cath: 3 years
Gender: Female
Attending: Allen D. Everett, MD
Fellow: Sara E. Regan, MD; Renee Friday, MD
Referring:
Height: 92.0 cm Weight: 12.0 kg
BSA = 0.55 m²
Fluoro: 11.40 min Contrast: 19.00 mL
Vein: Left Fem 5F
Artery: Right Fem 4F

Room Air Rest

Qp = 5.51 L/min (10.03 L/min/m²)
Qs = 1.60 L/min (2.90 L/min/m²)
Rp = 7.07 units (3.89 units x m²)
Rs = 31.95 units (17.57 units x m²)
Qp/Qs = 3.45 : 1 | Rp/Rs = 0.22

100% oxygen by face mask

Qp = 38.21 L/min (69.47 L/min/m²)
Qs = 1.56 L/min (2.83 L/min/m²)
Rp = 0.92 units (0.50 units x m²)
Rs = 37.26 units (20.50 units x m²)
Qp/Qs = 24.55 : 1 | Rp/Rs = 0.02

Diagnoses / Procedures
130. VSD, perimembranous
20. ASD, secundum
176. Secondary pulmonary hpn.
79. Persist. L SVC

Comments
1. Pulmonary vasculature responsive to oxygen therapy with an increase in the left to right shunt without a significant drop in pulmonary pressure.
2. Abnormal, but not stenotic mitral valve.
Room Air Rest

Calculations:

\[
\text{O}_2 \text{ capacity} = \text{HB} \times 1.36
\]
\[
17.95 = 13.2 \times 1.36
\]

\[
\text{MV O}_2 \text{ content} = (\text{O}_2 \text{ capacity} \times \text{MV sat})
\]
\[
9.69 = (17.95 \times 0.54)
\]

\[
\text{SA O}_2 \text{ content} = (\text{O}_2 \text{ capacity} \times \text{SA sat})
\]
\[
16.52 = (17.95 \times 0.92)
\]

\[
\text{PA O}_2 \text{ content} = (\text{O}_2 \text{ capacity} \times \text{PA sat})
\]
\[
15.44 = (17.95 \times 0.86)
\]

\[
\text{PV O}_2 \text{ content} = (\text{O}_2 \text{ capacity} \times \text{PV sat})
\]
\[
17.41 = (17.95 \times 0.97)
\]

\[
\text{Qp} = \frac{\text{O}_2 \text{ consumption}}{(\text{PV} - \text{PA content}) \times 10}
\]

\[
\text{Qs} = \frac{\text{O}_2 \text{ consumption}}{(\text{SA} - \text{MV content}) \times 10}
\]
\[
2.90 \text{ L/min/m}^2 = 198 / ((16.52 - 9.69) \times 10)
\]

\[
\text{Rp} = \frac{\text{mean MPA} - \text{wedge}}{\text{Qp}}
\]
\[
3.89 \text{ units} \times \text{m}^2 = (50 - 11) / 10.03 \text{ L/min/m}^2
\]
\[
(\text{Wood's units} \times \text{Meters}^2)
\]

\[
\text{Rs} = \frac{\text{mean sys} - \text{mean RA}}{\text{Qs}}
\]
\[
17.57 \text{ units} \times \text{m}^2 = (61 - 10) / 2.90 \text{ L/min/m}^2
\]
\[
(\text{Wood's units} \times \text{Meters}^2)
\]

Dissolved oxygen not calculated.

Values used:

\[
\text{MV sat} = 54
\]
\[
\text{PA sat} = 86
\]
\[
\text{Mean MPA} = 50
\]
\[
\text{Mean Sys} = 61
\]
\[
\text{HB} = 13.2
\]

\[
\text{PV sat} = 97
\]
\[
\text{SA sat} = 92
\]
\[
\text{Wedge} = 11.0
\]
\[
\text{Mean RA} = 10
\]
\[
\text{BSA} = 0.55 \text{ m}^2
\]
\[
\text{O}_2 \text{ consumption} = 198 \text{ mL/Min/m}^2
\]
Oxygen, Lotsa

MRN: 123
Birth Date: 01/01/2000
Cath Date: 05/22/2003
Cath #: 03c-0123
Age at cath: 3 years
Gender: Female

Attending: Allen D. Everett, MD
Fellow: Sara E. Regan, MD; Renee Friday, MD

Referring:

- Height: 92.0 cm
- Weight: 12.0 kg
- BSA = 0.55 m²

Fluoro: 11.40 min
Contrast: 19.00 mL
Vein: Left Fem 5F
Artery: Right Fem 4F

100% oxygen by face mask

Calculations:

- O₂ capacity = HB x 1.36
 17.95 = 13.2 x 1.36

- MV O₂ content = (O₂ capacity x MV sat) + (.003 x MV PO₂)
 11.24 = (17.95 x 0.62) + (.003 x 38.0)

- SA O₂ content = (O₂ capacity x SA sat) + (.003 x SA PO₂)
 18.24 = (17.95 x 0.98) + (.003 x 216.0)

- PA O₂ content = (O₂ capacity x PA sat) + (.003 x PA PO₂)
 17.96 = (17.95 x 0.98) + (.003 x 121.0)

- PV O₂ content = (O₂ capacity x PV sat) + (.003 x PV PO₂)
 18.24 = (17.95 x 0.98) + (.003 x 216.0)

- Qp = O₂ consumption / ((PV - PA content) x 10)

- Qs = O₂ consumption / ((SA - MV content) x 10)
 2.83 L/min/m² = 198 / ((18.24 - 11.24) x 10)

- Rp = (mean MPA - wedge) / Qp
 0.50 units x m² = (46 - 11) / 69.47 L/min/m²
 (Wood's units x Meters²)

- Rs = (mean sys - mean RA) / Qs
 20.50 units x m² = (67 - 9) / 2.83 L/min/m²
 (Wood's units x Meters²)

PO₂:

- MV PO₂ = 38.0
- PA PO₂ = 121.0
- PV PO₂ = 216.0
- SA PO₂ = 216.0

Values used:

- MV sat = 62
- PA sat = 98
- Mean MPA = 46
- Mean Sys = 67
- HB = 13.2
- MV sat = 98
- SA sat = 98
- Wedge = 11.0
- Mean RA = 9
- BSA = 0.55 m²
- O₂ consumption = 198 mL/Min/m²

Thermo CO:

<table>
<thead>
<tr>
<th>%O₂</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>SVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>RA</td>
<td>17</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>98</td>
<td>RV</td>
<td>86</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>PA</td>
<td>72</td>
<td>28</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>RPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LPA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermo CO:

<table>
<thead>
<tr>
<th>%O₂</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>LA</td>
<td>17</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>98</td>
<td>LV</td>
<td>86</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aAO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>dAO</td>
<td>86</td>
<td>53</td>
<td>67</td>
</tr>
</tbody>
</table>

IVC: O₂%: 90
Mean: 10

Femoral Artery: O₂%: 99
Sys/A: 107
Dias/V: 72
Mean: 80

Left SVC: O₂%: 89
Mean: 9

Printed: 04/03/2006
May 26, 2003

Adam Neal, M.D.
123 Main St.
Charlottesville, VA 22601

RE: Status of Lotsa Oxygen
MRN: 123
Visit Date: 05/22/03

Dear Dr. Neal,

I had the pleasure of taking care of your patient, Lotsa Oxygen today at the Virginia Children’s Heart Center in Charlottesville, Virginia. As you know, she is a 3 year-old determined by echocardiography to have atrial and ventricular septal defects and an abnormal mitral valve. For these reasons, she underwent cardiac catheterization to determine her present hemodynamics and anatomy.

At the time of her cardiac cath, she was angiographically and hemodynamically noted to have a large perimembranous type ventricular septal defect. She has a large left-to-right shunt, and systemic pulmonary artery pressures. Hemodynamic evaluation of her mitral valve did not demonstrate significant mitral stenosis although her mitral valve is abnormal anatomically.

Lotsa has a large ventricular septal defect associated with pulmonary hypertension and a large left-to-right shunt. Although her pulmonary artery pressures are elevated, her vascular bed is reactive to changes with oxygen. She is presently at significant risk of developing irreversible pulmonary vascular obstructive disease. We have recommended her for surgical repair at the earliest possible date by my surgical colleague, Dr. Shelby. Her care is being coordinated by Dr. Sing, the inpatient attending, who would be happy to discuss any details with you further. Thank you for allowing us to participate in the care of this child. If you have any questions in the interim, please feel free to call.

Sincerely,

Allen D. Everett, M.D.

ADE:jp
Lotsa Oxygen is a 3yo recently diagnosed by echocardiography with a ventricular septal defect, atrial septal defect and an abnormal mitral valve. She underwent cardiac catheterization to determine her present hemodynamics and anatomy.

PROCEDURE
The patient was sedated by the Pediatric Sedation Service. The patient was prepped and draped in the usual sterile fashion and both inguinal areas were infiltrated with 1% Xylocaine. Using percutaneous technique, a 5 French sheath was placed in the left femoral vein and a 4 french sheath in the right femoral artery. Through the arterial and venous sheaths, a right and transseptal left heart catheterization for congenital heart defects was performed. An innominate vein superior vena cava venogram was performed to demonstrate whether a left superior vena cava was present. A left ventricular cineangiogram was performed to demonstrate left ventricular function, size and the location and size of her ventricular septal defect. A right ventricular cineangiogram was performed to demonstrate the size of the right ventricle, patency of the tricuspid valve and the size of the pulmonary arteries. Hemodynamics were recorded both on room air and with 100% ambient oxygen. All catheters and sheaths were then removed, hemostasis was obtained by manual pressure and the patient returned to 7 West in stable condition.

ANGIOGRAPHIC DATA
1. An innominate vein venogram was performed in the AP projection. With injection, contrast was seen to fill a normal innominate vein with flow of contrast to a normal superior vena cava and right atrium. A left superior vena cava was present, draining via the coronary sinus to the right atrium.

2. A left ventricular cineangiogram was recorded in the RAO and LAO projections. With injection, contrast was seen to fill a finely trabeculated chamber that contracts well. With contraction, contrast was seen to flow across an unobstructed left ventricular outflow tract and immediately to opacify a large ventricular septal defect. The defect appears to be in the perimembranous location and is at least the size of the aortic root. The aortic arch is leftward.

3. A right ventricular cineangiogram was recorded in the AP and lateral projections. With injection, contrast was seen to fill a dilated, coarsely trabeculated chamber that contracts well. With contraction, contrast was seen to flow across an unobstructed right ventricular outflow tract and to opacify a dilated main pulmonary artery. The peripheral pulmonary vascular pattern appears grossly normal. On pulmonary venous recirculation, contrast was seen to return by normal pulmonary veins to the left atrium. There is obvious flow of contrast from the left atrium to the right atrium that even refluxes into the hepatic veins.

DISPOSITION
Lotsa has large atrial and ventricular septal defects with a large left-to-right shunt. She also has associated moderate to severe pulmonary hypertension that is only mildly improved with oxygen. I have forwarded this information to Dr. Johns, the inpatient attending who will be coordinating early surgical repair for Lotsa with our surgical colleague, Dr. Smith, in the next few days.

Allen D. Everett, MD
Attending
Pediatric Cardiology
ADE/jp D: 05/22/03 T: 05/26/03
The Hospital for Sick Children
The University Toronto, Faculty of Medicine
Pediatric Cardiology
Cardiac Catheterization Laboratory

Plastie, Angela
MRN: BB518
Birth Date: 12/12/1998
Cath Date: 02/28/1999
Cath #: jj-19981
Age at cath: 2 months
Gender: Female
Attending: Allen D. Everett, MD
Fellow: Renee Friday, MD
Referring:

Height: 60.0 cm Weight: 4.0 kg
BSA = 0.25 m²
Fluoro: 7.00 min Contrast: 20.00 mL
Vein: None
Artery: 5F changed to a 6F

Pre-Angioplasty
Qp =
Qs =
Rp =
Rs =
Qp/Qs = | Rp/Rs =

Heart Rate: 130 bpm
VO2: 148 ml/min/m²
Hemoglobin: 9.0 gm/dL

Inspired O2: 21%
pH: 7.44
pCO2: 37.0
pO2: 196.0
HCO3: 24.0

Thermo CO:

%O2	Site	Sys/A	Dias/V	Mean
SVC				
RA				
RV				
PA				
RPA				
LPA				

<table>
<thead>
<tr>
<th>%O2</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LPA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wedge Mean

%O2 | Site | Sys/A | Dias/V | Mean |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>dAO</td>
<td>56</td>
<td>43</td>
<td>50</td>
</tr>
</tbody>
</table>

Diagnoses / Procedures
568. Balloon angioplasty AO
672. Coarctation repair, SF

Comments
Coarctation of the aorta s/p subclavian flap repair with re-coarctation
S/P balloon angioplasty with 6 and then 8 mm balloon.
The stenosis measured 2mm, the transverse arch 6.5 mm and the decending aorta 7.75 mm
Initial AAO to DAO gradient 80 mmHG, post angioplasty 15 mmHG
Aorta pre-angioplasty, gradient 80 mm

AAO & FA pressures, pre-angioplasty

Aorta post-angioplasty, gradient 15 mmH

AAO & FA pressures, post-angioplasty
Rogers, Buck
MRN: 1285656
Birth Date: 09/23/1995
Cath Date: 09/27/1995
Age at cath: 4 days
Gender: Male
Attending: Allen D. Everett, MD
Fellow: Heller MD, Felice
Referring: Matherne MD, Paul
Height: 73.9 cm Weight: 9.8 kg
BSA = 0.43 m²
Fluoro: 0.00 min Contrast: 0.00 mL
Vein: 5fr rt
Artery: 4 fr rt
status-post Art. Switch
Qp = 2.61 L/min (6.07 L/min/m²)
Qs = 2.61 L/min (6.07 L/min/m²)
Rp = 1.53 units (0.66 units x m²)
Rs = 26.43 units (11.37 units x m²)
Qp/Qs = 1.00 : 1 | Rp/Rs = 0.06
Heart Rate: 85 bpm
VO2: 198 ml/min/m²
Hemoglobin: 10.9 gm/dL
Inspired O2: 21%
pH: 7.35
pCO2: 40.0
pO2: 108.0
HCO3: 22.0
Thermo CO:

<table>
<thead>
<tr>
<th>%O2</th>
<th>Site</th>
<th>Sys/A</th>
<th>Dias/V</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>SVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>RA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>RV</td>
<td>34</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>75</td>
<td>PA</td>
<td>32</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>75</td>
<td>RPA</td>
<td>18</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>75</td>
<td>LPA</td>
<td>17</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

Right
<table>
<thead>
<tr>
<th>%O2</th>
<th>Site</th>
<th>Wedge</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>LA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>LV</td>
<td>98</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>dAO</td>
<td>98</td>
<td>48</td>
</tr>
</tbody>
</table>

Diagnoses / Procedures
112. Transposition of the Great Arteries
722. Arterial switch
86. Supravalvular Pulmonary Stenosis

Comments
Normal left ventricular function

Arrows indicate catheter course.